Predicting the pore-filling ratio in lumen-impregnated wood

Image credit: Springer

Abstract

Lumen impregnation, unlike most other wood modification methods, is typically assessed by the pore-filling ratio (PFR) (i.e. the fraction of luminal porosity filled) rather than by weight percentage gain (WPG). During lumen impregnation, the impregnants act on the voids in the wood rather than on the solid mass (e.g. cell walls), but the PFR cannot be measured as conveniently as the WPG during processing. Here, it is demonstrated how the PFR can be calculated directly from the WPG if the bulk density of the untreated wood is known. The relationship between the WPG and bulk density was examined experimentally by applying a pressured impregnation on knot-free specimens from Sitka spruce with a liquid mixture of methacrylate monomers. Based on the validated model, it was possible to further study the effect of different process-related parameters, such as hydraulic pressure, on lumen impregnation. Skeletal density is another key parameter in this model, which directly reflects the amount of inaccessible pores and closed lumens, and can be independently determined by helium pycnometry. The permeability can be qualitatively evaluated by PFR as well as skeletal density. For instance, poor permeability of knotty wood, due to the large extractives content around knots, was reflected by a lower skeletal density and inefficient lumen impregnation (low PFR). Although this model was examined on a laboratory scale, it provides guidance on the precise effect of different parameters on lumen impregnation, thereby improving the fundamental understanding of and enabling better control over the modification of wood by impregnation.

Guanglu Wu
Guanglu Wu
Principal Investigator

Research interests: multi-component functional assemblies, supramolecular catalysis, and smart soft matter

Related